Neuropeptide RFRP inhibits the pacemaker activity of terminal nerve GnRH neurons.

نویسندگان

  • Chie Umatani
  • Hideki Abe
  • Yoshitaka Oka
چکیده

The terminal nerve gonadotropin-releasing hormone (TN-GnRH) neurons show spontaneous pacemaker activity whose firing frequency is suggested to regulate the release of GnRH peptides and control motivation for reproductive behaviors. Previous studies of the electrophysiological properties of TN-GnRH neurons reported excitatory modulation of pacemaker activity by auto/paracrine and synaptic modulations, but inhibition of pacemaker activity has not been reported to date. Our recent study suggests that neuropeptide FF, a type of Arg-Phe-amide (RFamide) peptide expressed in TN-GnRH neurons themselves, inhibits the pacemaker activity of TN-GnRH neurons in an auto- and paracrine manner. In the present study, we examined whether RFamide-related peptides (RFRPs), which are produced in the hypothalamus, modulate the pacemaker activity of TN-GnRH neurons as candidate inhibitory synaptic modulators. Bath application of RFRP2, among the three teleost RFRPs, decreased the frequency of firing of TN-GnRH neurons. This inhibition was diminished by RF9, a potent antagonist of GPR147/74, which are candidate RFRP receptors. RFRP2 changed the conductances for Na(+) and K(+). The reversal potential for RFRP2-induced current was altered by inhibitors of the transient receptor potential canonical (TRPC) channel (La(3+) and 2-aminoethoxydiphenyl borate) and by a less selective blocker of voltage-independent K(+) channels (Ba(2+)). By comparing the current-voltage relationship in artificial cerebrospinal fluid with that under each drug, the RFRP2-induced current was suggested to consist of TRPC channel-like current and voltage-independent K(+) current. Therefore, synaptic release of RFRP2 from hypothalamic neurons is suggested to inhibit the pacemaker activity of TN-GnRH neurons by closing TRPC channels and opening voltage-independent K(+) channels. This novel pathway may negatively regulate reproductive behaviors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuropeptide RFRP inhibits the pacemaker activity of terminal nerve GnRH

1 Neuropeptide RFRP inhibits the pacemaker activity of terminal nerve GnRH 2 neurons 3 4 Chie Umatani, Hideki Abe and Yoshitaka Oka 5 6 Department of Biological Sciences, Graduate School of Science, The University of 7 Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, JAPAN 8 9 Running head: RFRP-induced hyperpolarization of TN-GnRH neurons 10 11 Corresponding author: 12 Yoshitaka Oka 13 Departmen...

متن کامل

Identification of Human GnIH Homologs, RFRP-1 and RFRP-3, and the Cognate Receptor, GPR147 in the Human Hypothalamic Pituitary Axis

The existence of a hypothalamic gonadotropin-inhibiting system has been elusive. A neuropeptide named gonadotropin-inhibitory hormone (GnIH, SIKPSAYLPLRF-NH(2)) which directly inhibits gonadotropin synthesis and release from the pituitary was recently identified in quail hypothalamus. Here we identify GnIH homologs in the human hypothalamus and characterize their distribution and biological act...

متن کامل

The control of reproductive physiology and behavior by gonadotropin-inhibitory hormone

Gonadotropin-releasing hormone (GnRH) controls the reproductive physiology and behavior of vertebrates by stimulating synthesis and release of gonadotropin from the pituitary gland. In 2000, another hypothalamic neuropeptide, gonadotropin-inhibitory hormone (GnIH), was discovered in quail and found to be an inhibiting factor for gonadotropin release. GnIH homologs are present in the brains of v...

متن کامل

Modulation of pacemaker activity by salmon gonadotropin-releasing hormone (sGnRH) in terminal nerve (TN)-GnRH neurons.

The terminal nerve (TN)-gonadotropin-releasing hormone (GnRH) neurons project widely in the brain instead of the pituitary and show endogenous pacemaker activity that is dependent on the physiological conditions of the animal. We suggest that the TN-GnRH system may act as a putative neuromodulator that is involved in the regulation of many long-lasting changes in the animal's behavior. In the p...

متن کامل

Gonadotropin-inhibitory hormone inhibits GnRH-induced gonadotropin subunit gene transcriptions by inhibiting AC/cAMP/PKA-dependent ERK pathway in LβT2 cells.

A neuropeptide that directly inhibits gonadotropin secretion from the pituitary was discovered in quail and named gonadotropin-inhibitory hormone (GnIH). The presence and functional roles of GnIH orthologs, RF-amide-related peptides (RFRP), that possess a common C-terminal LPXRF-amide (X = L or Q) motif have also been demonstrated in mammals. GnIH orthologs inhibit gonadotropin synthesis and re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 109 9  شماره 

صفحات  -

تاریخ انتشار 2013